Mitral valve endothelial cells with osteogenic differentiation potential.

نویسندگان

  • Jill Wylie-Sears
  • Elena Aikawa
  • Robert A Levine
  • Jeong-Hee Yang
  • Joyce Bischoff
چکیده

OBJECTIVE Cardiac valvular endothelium is unique in its ability to undergo endothelial-to-mesenchymal transformation, a differentiation process that is essential for valve development and has been proposed as mechanism for replenishing the interstitial cells of mature valves. We hypothesized that the valvular endothelium contains endothelial cells that are direct precursors to osteoblastic valvular interstitial cells (VICs). METHODS AND RESULTS Clonal cell populations from ovine mitral valve leaflets were isolated by single cell plating. Mitral valvular endothelial and mesenchymal clones were tested for osteogenic, adipogenic, and chondrogenic differentiation, determined by the expression of lineage-specific markers. Mitral valvular endothelial clones showed a propensity for osteogenic, as well as chondrogenic differentiation that was comparable to a mitral valvular VIC clone and to bone marrow-derived mesenchymal stem cells. Osteogenic differentiation was not detected in nonvalvular endothelial cells. Regions of osteocalcin expression, a marker of osteoblastic differentiation, were detected along the endothelium of mitral valves that had been subjected in vivo to mechanical stretch. CONCLUSIONS Mitral valve leaflets contain endothelial cells with multilineage mesenchymal differentiation potential, including osteogenic differentiation. This unique feature suggests that postnatal mitral valvular endothelium harbors a reserve of progenitor cells that can contribute to osteogenic and chondrogenic VICs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تاثیر Chitosan بر ویژگی‌های استئوژنیک سلول‌های بنیادی مزانشیمال پالپ دندان شیری

Background and Aims: The exfoliated human deciduous tooth contains multipotent stem cells [Stem Cell from Human Exfoliated Deciduous tooth (SHED)] that identified to be a population of highly proliferative and clonogenic. These cells are capable of differentiating into a variety of cell types including osteoblast/osteocyte, adiopcyte, chondrocyte and neural cell. The aim of this study was to ev...

متن کامل

Differentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells

Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...

متن کامل

The osteogenic differentiation stimulating activity of Sea cucumber methanolic crude extraction on rat bone marrow mesenchymal stem cells

Objective(s):Sea cucumber derived bioactive compound is considered efficient in treatment of bone disorders. This study was performed   to evaluate the effect of this extract on differentiation of rat bone marrow mesenchymal stem cells (rBMMSc) into osteogenic lineage. Materials and Methods: Isolated rBMMSc were grown in DMEM supplemented with 10% FBS. The cells were exposed to different concen...

متن کامل

Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor

Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...

متن کامل

Review Paper: Embryonic Stem Cell and Osteogenic Differentiation

Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 31 3  شماره 

صفحات  -

تاریخ انتشار 2011